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In this paper we establish the equivalence among various kinds of pointwise
forms under the presence of appropriate symmetric connections. We show also,
in the presence of a diffusion on M , a bijection between pointwise n-forms and
certain global n-forms called localizable.

1. INTRODUCTION

The theory of differential forms in synthetic differential geometry can
be traced back to Kock (1978). It was discussed also by G. E. Reyes and

was presented in books by Kock (1981) and Lavendhomme (1987).

For basic concepts of synthetic differential geometry and its notations

in particular, the reader is referred to Lavendhomme (1996). The latter work

distinguishes global and pointwise differential forms. A global n-form on a

microlinear space M assigns a real-valued function on M to each n-tuple of
vector fields on M in an n-linear and alternating way. Pointwise differential

forms are divided into classical and singular ones. A classical n-form on M
assigns a real number to each n-tuple of vectors tangent at the same point

of M in an n-linear and alternating way, while a singular n-form on M assigns

a real number to each microcube on M in an n-linear and alternating way.

Lavendhomme (1996) shows that singular differential forms naturally give
rise to classical ones (Section 4.1, Proposition 5), which give, in turn, global

ones (Section 6.1, Proposition 2). It is also shown that if M is endowed with

a symmetric connection, then there is a bijection between classical 2-forms

and singular ones (Section 4.1, Proposition 6).
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Nishimura (1997) proposed a more comprehensive theory of pointwise

differential forms, in which they operate on M E not only with E 5 D (n) (in

case of classical n-forms) and E 5 D n (in case of singular n-forms), but also
with various small objects E between the above two extremes (Section 4).

However, his exposition is erroneous in Proposition 4.7 as well as in Corollary

4.8, which was pointed out by the first author. Thus we decided to take up

the matter again in collaboration.

In this paper we will establish the equivalence among various kinds of

pointwise forms under the presence of appropiate symmetric connections.
We will show also, under the presence of a diffusion on M, a bijection

between pointwise n-forms and certain global n-forms called localizable.

2. SOME VECTOR BUNDLES

For n a natural number and any p $ 2, consider

D (n, p) 5 {d P D n | " i1 ? ? ? ip di1 ? ? ? dip 5 0}

For p 5 2 we have D (n; 2) 5 D (n) and for p . n, D (n; p) 5 D n. We have
the inclusions ip: D (n; p) ® D (n; p 1 1)

Let M be a microlinear object. Each MD(n;p) has n scalar multiplications.

They are defined by

( a ? k g )(d1, . . . , dn) 5 g (d1, . . . , a dk , . . . , dn)

for 1 # k # n and for any a in R and g in MD(n;p).

We will prove that we can define additions along an axis. It is a little

less simple than in the extreme cases of MD(n) and M Dn
where the definitions

of the different additions are easy. In the case of DD(n) it is because MD(n) .
M D 3 M M D 3 M ? ? ? 3 M M D and in the case of M Dn

it is because an n-

microcube g : D n ® M can be seen (in n different manners) as a tangent

vector from D to M Dn 2 1
.

In the general case of MD(n;p), it does not seem possible to write D (n; p)

as a product D 3 E and thus g : D (n; p) ® M is not directly a tangent vector

to some M. But we will see that D (n; p) is a quasicolimit of a diagram
composed of products of D. More precisely, consider for 1 # j1 , j2 , ? ? ? ,
jp 2 1 # n products

Dj1 3 D j2 3 ? ? ? 3 Djp 2 1

where Dj1 5 D j2 5 ? ? ? 5 Djp 2 1 5 D. If 1 # i1 , i2 , ? ? ? , ip 2 2 # n and

{i1, . . . , ip 2 2} # { j1, . . . , jp 2 1}. We consider also the injections
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Di1 3 ? ? ? 3 D ip 2 2 ( 5 D p 2 2) ® Dj1 3 ? ? ? 3 Djp 2 1 ( 5 D p 2 1)

obtained by introducting 0 at the kth position, where k is the only natural in

{ j1, . . . , jp 2 1} and not in {i1, . . . , ip 2 2}. We have a right cone to D (n; p)

thanks to the injections of D j1 3 ? ? ? 3 Djp 2 1 into D (n; p).

For example, in the case of D (4; 3) this cone is given by Fig. 1, and
in the case of D (4; 4), by Fig. 2.

Proposition 1. D (n; p) is a quasicolimit of the diagram of Fig. 2

Proof. It is enough to prove that R believes that it is a colimit. We

consider thus the (C n
p) ( p 2 1)-microcubes:

g j1 ? ? ? jp 2 1: D p 2 1 ® R

for 1 # j1 , j2 , ? ? ? , jp 2 1 # n such that the diagram commutes.
We prove that there exists a factorization by D (n; p). Any g j1 ? ? ? jp 2 1 is a

polynomial of degree p 2 1 in the dj1, . . . , djp 2 1. Let bj1 ? ? ? jp 2 1 dj1 ? ? ? djp 2 1 its

unique term of degree p 2 1.

The commutation of the diagram gives us a coherence for the terms of

degree # p 2 2. For example, if a
i1 ? ? ? ip 2 2
( j1 ? ? ? jp 2 1)di1 ? ? ? dip 2 2 and a

i1 ? ? ? ip 2 2
( j81 ? ? ? j8p 2 1)dj1 ? ? ?

dip 2 2 are corresponding terms of degree p 2 2 in, respectively, g j1 ? ? ? jp 2 1 and

g j81 ? ? ? j8p 2 1, we have {i1, . . . , ip 2 2} # { j1, . . . , jp 2 1} and also {i1, . . . , ip 2 2}

# { j 81, . . . , j 8p 2 1} and, by commutation, a
i1 ? ? ? ip 2 2
( j1 ? ? ? jp 2 1) 5 a

i1 ? ? ? ip 2 2
( j81 ? ? ? j8p 2 1). Thus to obtain

the factorization g : D (n; p) ® R there is no ambiguity for terms of degree

less than or equal to p 2 2.

Fig. 1.
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Fig. 2.

The terms of degree p 2 1 are the b( j1 ? ? ? jp 2 1)dj1 ? ? ? djp 2 1 of g j1 ? ? ? jp 2 1 for

any ( j1 ? ? ? jp 2 1) and there is no term of degree . p 2 1, as g must only be

defined on D (n; p).

Unicity of g is easy. n

We will now define the sum along an axis, the first, to fix one. Let g 1

and g 2 be two maps from D (n; p) to M such that g 1(0, d2, . . . , dn) 5 g 2(0,

d2, . . . , dn). We consider the restrictions g j1 ? ? ? jp 2 1
1 and g j1 ? ? ? jp 2 1

2 of g 1 and g 2

to Dj1 3 ? ? ? 3 Djp 2 1. We construct a new map g 1 1 1 g 2 from D (n; p) to M
by giving a cone on the diagram of which D (n; p) is a quasicolimit. Let 1 #
j1 , j2 , ? ? ? , jp 2 1 # n. If j1 Þ 1, we take g ( j1 ? ? ? jp 2 1) 5 g j1 ? ? ? jp 2 1

1 5
g j1 ? ? ? jp 2 1

2 . If j1 5 1, we take the sum along the first axis g j1 ? ? ? jp 2 1
1 1 1

g j1 ? ? ? jp 2 1
2 . Trivially we have a cone and the factorization g 1 1 1 g 2 is well

defined.
If we consider the injection D (n 2 1; p) ® D (n; p) inserting 0 at the

kth position, the following is proved (for k 5 1, but it is true for any k);

Proposition 2. The mapping

M D(n;p) ® M D(n 2 1;p)

is a vector bundle. n
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3. COMPARISON OF DIFFERENT CONCEPTS OF
PUNCTUAL FORMS

For any small object of type D (n; p) we have a punctual concept of a

differential form.

Definition 1. Let M be a microlinear object. A differential D (n; p)-form

is a map v : MD(n;p) ® R which is homogeneous componentwise (and thus

linear on each fiber) and which is alternated.

A D (n; 2)-form is what is called a classical differential n-form in . . .

(19..) and a D (n; n 1 1)-form is called a singular differential n-form.

We denote by V D(n; p) the set of differential D (n; p)-forms on M.
The chain of inclusions ip

D(n) ® D(n; 3) ® ? ? ? ® D(n; p) ® D(n; p 1 1) ® ? ? ? ® D(n; n) ® Dn

induces, for any microlinear object M, the chain of retrictions M ip:

M Dn
® M D(n;n) ® ? ? ? ® M D(n;p 1 1) ® M D(n;p) ® ? ? ? ® M D(n;3) ® M D(n)

By composition with these restrictions, we obtain a map from V D(n;p)(M ) to

V D(n;p 1 1)(M ) associating to v its composite with restriction and this is, as

v , homogeneous componentwise and alternated (because the restrictions have

properties of homogeneity and symmetry).

We ask for a map from V D(n;p 1 1)(M ) to V D(n;p)(M ). For that a section
M ip would be useful.

Definition 2. An n-connection of degree p, ¹ p
n, is a section of M ip,

¹ p
n: M D(n;p) ® M D(n;p 2 1)

which is n-homogeneous (i.e., ¹ p
n( a ? k g ) 5 a ? k ¹ p

n( g ) for any a in R, any g in

MD(n;p), and 1 # k # n).

If we have v in V D(n;p 1 1)(M ), we can consider v + ¹ p
n, but this has the

property of homogeneity, but not necessarily alternation. We ask for a condi-

tion of symmetry on ¹ p
n.

Let s be a permutation of (1, 2, . . . , n). We define S : MD(n;p ) ® MD(n;p) by

S ( g )(d1, . . . , dn) 5 g (d s (1), . . . , d s (n))

Definition 3. We say an n-connection of degree p, ¹ p
n, is symmetric if

¹ p
n( S ( g )) 5 S ( ¹ p

n( g ))

for any g in MD(n;p) and any permutation s .
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If M has a symmetric n-connection of degree p, ¹ p
n, we have the two maps

2 + M ip: V D(n;p)(M ) ® V D(n;p 1 1)(M )

and

2 + ¹ p
n: V D(n;p 1 1)(M ) ® V D(n;p)(M )

We will show that they are inverse.
Some preliminaries are necessary. Let X 5 D (n; p 1 1) Ú D ((C n

p)) 5
{(d, e) | d P D (n; p 1 1), e P D ((C n

p)), and " i " j di ? dj 5 0}. We have two

functions f and c from D (n; p 1 1) into X. They are given by:

(a) f (d ) 5 (d, 0)

(b) c (d ) 5 (d, (di1 ? di2, . . . , dip)1 # i1 , ? ? ? , ip # n)

Here we agree to order the sequences 1 # i1 , ? ? ? , ip # n by

lexicographic order and to enumerate these sequences by integers from 1 to

C n
p. Then c ( d ) is in X because d P D (n; p 1 1) and thus the product of

p 1 1 factors di from d is vanishing.

Proposition 3. The diagrams of Fig. 3 are quasicolimits.

Proof. Any h:X ® R can be written uniquely as

h (d, e) 5 a0 1 o
n

i 5 1

ai di 1 o
i , j

aij di dj 1 ? ? ?

1 o
1 # i1 , ? ? ? , ip # n

ai1 ? ? ? ipdi1di2 ? ? ? dip 1 o
C n

p

k 5 1

xkek

If g 1 and g 2: D (n; p 1 1) ® R coincide on D (n; p), they can differ only by

their terms of degree p. We can write

g 1(d ) 5 a0 1 o
n

i 5 1

ai di 1 ? ? ? 1 o
i1 , ? ? ? , ip 2 1

ai1 ? ? ? ip 2 1di1 ? ? ? dip 2 1

1 o
i1 , ? ? ? , ip 2 1

ai1 ? ? ? ipdi1 ? ? ? dip

Fig. 3.
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g 2(d ) 5 a0 1 o
n

i 5 1

ai di 1 ? ? ? 1 o
i1 , ? ? ? , ip 2 1

ai1 ? ? ? ip 2 1di1 ? ? ? dip 2 1

1 o
i1 , ? ? ? , ip 2 1

bi1 ? ? ? ipdi1 ? ? ? dip

Their common facorization through X is given by

g (d, e) 5 a0 1 o
n

i 5 1

ai di 1 ? ? ?

1 o
i1 , ? ? ? , ip 2 1

ai1 ? ? ? ip 2 1di1 ? ? ? dip 2 1 1 o
Cn

p

k 2 1
ak pk 1 o

Cn
p

k 2 1
(bk 2 ak)ek

where k is the number of the sequence i1 , ? ? ? , ip , ak 5 ai1 ? ? ? ip, bk 5
bi1 ? ? ? ip, and pk 5 di1di2 ? ? ? dip. We have g + f 5 g 1 and g + c 5 g 2. It is easy

to see that g is uniquely determined by these conditions.

The crucial step is then the following proposition.

Proposition 4. Let v be a differential D(n; p 1 1)-form on M. If g 1 and

g 2 [from D(n; p 1 1) to M ] coincide on D(n; p), then v ( g 1) 5 v ( g 2).

Proof. (a) By Proposition 3, as g 1 and g 2 coincide on D(n; p), we have
the factorization g: X ® M with g( d, 0) 5 g 1(d ) and g( d, (di1 ? ? ?
dip)i1 , ? ? ? , ip) 5 g 2( d ).

But we can compose g with other functions with values in X. We consider

the p 1 1-microcube g 8 given by

g 8(d 5 g(d, d1 ? d2 . . . dp , 0, 0, . . . , 0)

(there are C n
p 2 1 zeros). For d1 5 0, g 1 and g 8 coincide and we can consider

g 1 2 1 g 8 (the difference is taken along the first axis as described for Proposi-

tion 2).
(b) We shall now compute g 1 2 1 g 8. We say that it is given by

( g 1 2 1 g 8)(d ) 5 g(0, d2, . . . , dn , d1 ? d2 . . . dp , 0, . . . , 0)

We consider the restrictions g 1,2,..., p
1 and g 8,1,2,..., p of g 1 and g 8 to D1 3 ? ? ? 3

Dp (where, as above, Di 5 D for all i). These restrictions are

g 1,2,..., p
1 (d1, d2, . . . , dp , 0, . . . , 0) 5 g(d1, d2, . . . , dp , 0, . . . , 0)

(where the number of zeros is n 2 p 1 C n
p); and

g 8,1,2,..., p(d1, d2, . . . , dp , 0, . . . , 0)

5 g(d1, d2, . . . , dp , 0, . . . , 0, d1 ? d2 ? ? ? dp , 0, . . . , 0)
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(where there are first n 2 p zeros and then C n
p 2 1 zeros). We take now d1

and d 81 with d1 ? d 81 5 0. Consider g(d1 2 d 81, d2, . . . , dp , 0, . . . , 0, d1 ? d2

? ? ? dp , 0, . . . , 0). For d 81 5 0 we obtain g 8,1,2,..., p. For d1 5 0 we obtain
g( 2 d 81, d2, . . . , dp , 0, . . . , 0) 5 g 1,2,..., p

1 ( 2 d 81, d2, . . . , dp) and the difference

of g 1,2,..., p
1 and g 8,1,2,..., p

1 is indeed g(0, d2, . . . , dp , 0, . . . , d1 ? d2 ? ? ? dp , 0,

. . . , 0).

(c) Let f (d 5 g 1(0, d2, . . . , dn), which is equal to ( g 1 2 1 g 8)(0, d2,

. . . , dn). For d2 5 0 we have f (d1, 0, d3, . . . , dn) 5 g 1(0, 0, d3, . . . , dn) and

( g 1 2 1 g 8)(d1, 0, d3, . . . , dn) 5 g (0, 0, d3, . . . , dn , 0, 0, . . . , 0)

5 g 1(0, 0, d3, . . . , dn)

and it makes sense to put

a 5 ( g 1 2 1 g 8) 2 2 f

(d) We observe that a (d1, 0, d3, . . . , dn) 5 a (0, d2, d3, . . . , dn) 5 a (0,

0, d3, . . . , dn) and thus a depends only on the product d1 ? d2 (Lavendhomme,

1996) Proposition 7 of Section 2.2). Thus a is symmetric in (d1, d2). As v
is alternated, v ( a ) 5 0. And, by the linearity along the second axis

0 5 v (( g 1 2 1 g 8) 2 2 f )

and thus

v ( g 1 2 1 g 8) 5 v ( f )

But v ( f ) 5 0 by the linearity of v along the first axis (because f is

independent of d1). By linearity on the first axis again we obtain

v ( g 1) 5 v ( g 8)

(e) We can repeat the process applied to g 8 and g 2 using now

g 2( d ) 5 g ( d, 0, d1 ? d2 ? ? ? dp 2 1 ? dp 1 1, 0, . . . , 0)

and we obtain as above v ( g 8) 5 v ( g 2).

We must apply this process C n
p times (one time for each product

di1 ? di2 ? ? ? dip) and we construct g 8, g 2, g 3, . . . , g Cn
p. Observing that g Cn

p 5
g 2, we obtain

v ( g 1) 5 v ( g 2)

as was asked. n

Proposition 5. Let (M, ¹ p
n) be a microlinear object equipped with a

symmetric n-connection of degree p. The maps

2 + M ip: V D(n;p)(M ) ® V D(n;p 1 1)(M )
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and

2 + ¹ p
n: V D(n;p 1 1)(M ) ® V D(n;p)(M )

are inverse bijections.

Proof. In one sense it is trivial and in the other it is a consequence of

the preceding proposition. n

Definition 4. An n-connection ¹ n on a microlinear object M is a family

( ¹ p
n)2 # p # n

where ¹ p
n is an n-connection of degree p. We say ¹ n is symmetric if each

¹ p
n is symmetric.

The following proposition is then a trivial corollary of Proposition 5.

Proposition 6. Let (M, ¹ n) be a microlinear object with a symmetric n-

connection. There is a bijection between the sets of differential D (n; p)-forms

for all p, in particular between classical and singular differential n-forms.

4 COMPARISON BETWEEN PUNCTUAL AND GLOBAL
DIFFERENTIAL FORMS

We recall (Lavendhomme, 1996, Section 1.3, Definition 7) that a diffu-
sion P on a microlinear object M is for each x in M an R-linear map

Px: TxM ® X (M )

such that Px(t)(x) 5 t.
A global differential n-form is a map v : -(})\ ® 5} which is n-

homogeneous (for products by elements of R M) and alternated (Lavend-
homme, 1996, Section 6.1, Definition 3).

Definition 5. Let M be a microlinear object and v a global differential

n-form. We say v is localizable if v (X1, . . . , Xn)(x) 5 0 if one of the vector

fields X1, . . . , Xn is singular in x (i.e., is vanishing at x). We denote by

V n
l (M ) the set of localizable global differential n-forms.

Proposition 7. If (M, P) is a microlinear object M with a diffusion P, there

exists a bijection between the set V n(M ) of (punctual) classical differential n-

forms and the set V n
l (M ) of localizable global differential n-forms.

Proof. (a) We define f : V n(M ) ® V n
l (M ) by

f ( v )(X1, . . . , Xn)(x) 5 v x (X1, x, . . . , Xn, x)

Trivially f ( v ) is a global differential n-form and it is localizable since v x(X1,x,

. . . , Xn,x) is vanishing if one of the Xi,x is zero (by the R-n-homogeneity).
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We define c : V n
l (M ) ® V n(M ) by

c ( v )x(t1, . . . , tn) 5 v (Pxt1, . . . , Pxtn)(x)

for t1, . . . , tn in Tx M. And c ( v ) is R-n-homgeneous and alternated.

(b) For v in V n(M ),

c ( f ( v ))x(t1, . . . , tn) 5 f ( v (Pxt1, . . . , Pxtn)(x)

5 v x((Pxt1)x , . . . , (Pxtn)x)

5 v x(t1, . . . , tn)

by definition of a diffusion. Thus c + f 5 id V n
(M).

(c) For v in V n
l (M ),

f ( c ( v ))(X1, . . . , Xn)(x) 5 c ( v )x(X1, x, . . . , Xn, x)

5 v (Px(X1, x, . . . , Px(X n, x))(x)

As Xi 2 Px(Xi,x) vanish at x and v is localizable, we have v (X1 2 Px(X1,x),
. . .)(x) 5 0 and thus v (Px(X1,x), . . . , Px(Xn,x))(x) 5 v (X1, . . . , Xn)(x) and so

f ( c ( v )) 5 v . n

We end with the banal observations that the exterior product of two

localizable global differential forms is localizable, that the exterior differential

of a localizable is localizable, and that the Lie derivative of a localizable
is localizable.
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